2018 Transportation Engineering and Safety Conference State College, Pennsylvania

The Relationship between Geometry and Traffic Operations (W.I.I.W.&H.Y.C.U.T.T.F.E.D.D.T.)

Three Ways to Address Congestion

- Add Capacity (i.e. add lanes)
- 2) Reduce **Demand**
 - a) Demand Management (Carpooling, Mode Choices, Telecommuting)
 - b) Placing destinations to where supply exists (ex. TOD)
 - c) Contain Sprawl
 - d) Spreading demand across a network
- 3) Improve **Traffic Flow**
 - a) Signals (Phases, Cycles, Progression)
 - b) Weaving, Merging, Diverging (Flow Friction)

Innovative Geometric Design Focuses on

Demand and **Traffic Flow**

- 1) One-Way Street Progression
- 2) Creating Mini-Networks of Smaller Intersections
 - a) T-intersections
 - b) Intersections with one-way movements
- 3) More Efficient Signal Phases (when signalized)
- 4) Conflicts Reduced and Spread Out

Traffic Operations (WIIW&HYCUTTFEDDT)

Benefits

SAFETY

- Fewer conflict points
- Significant
 Before/After
 Crash
 Reductions

MOBILITY

- Less delay
- Reduced congestion

VALUE

- Less ROW
- Less construction costs
- Implemented quicker

One-Way Street Progression

Simple to Synchronize Signals
Variable: Speed determines offset of signal
Speed controlled by signals and/or geometry (i.e. roundabouts)

One-Way Street Progression

Simple to Synchronize Signals

Variable: Speed determines offset of signal

Speed controlled by signals and/or geometry (i.e.

roundabouts)

Two-way progression relies on:

Speed,

Distance (between signals),

And Cycle Length

Mini-Networks of Smaller Intersections

Cities Have Full Networks of Small Intersections

Mini-Networks of Smaller Intersections

Why are Networks Good?

- Spreads out Demand
- Spreads out Conflicts

Why are Small Intersections Good?

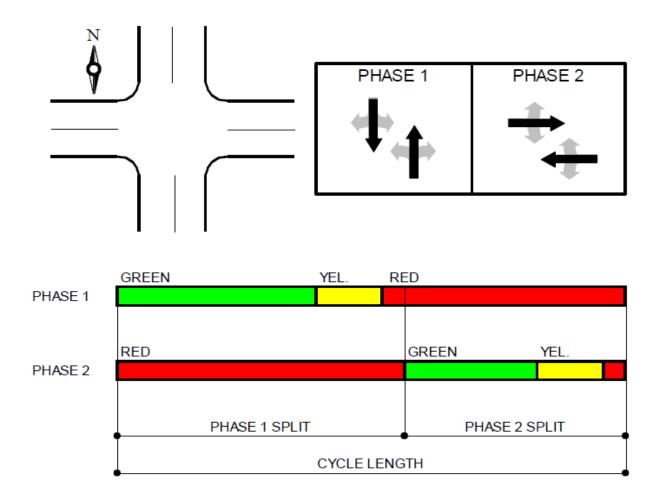
Shorter Clearance Time

Less Exposure for Pedestrians and Bicycles to Moving

Vehicles

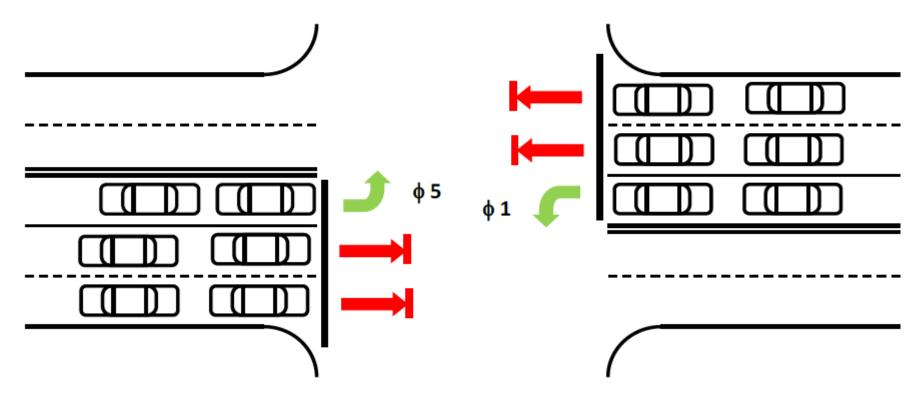
So why are we so anti-network outside of cities? i.e. Build larger

Intersection vs smaller


Intersections?

Traffic Operations (WIIW&HYCUTTFEDDT)

Signal phasing

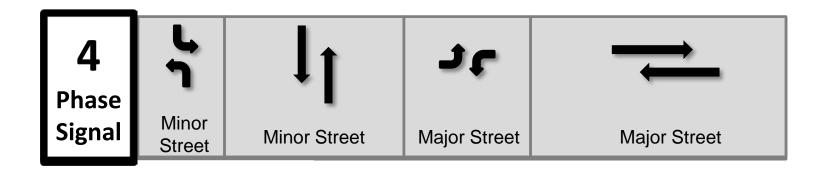

Basic twophase signal operation

Source: MnDOT Traffic Signal Timing and Coordination Manual

Signal phasing

Adding "protected" left-turn phases is common as volumes increase

Source: MnDOT Traffic Signal Timing and Coordination Manual


Adding more phases essentially "steals" time away from the major through movement and can increase intersection delays

Signal phasing

Strategically relocating movements to reduce phases can provide more green time to through traffic

Fewer phases – GOOD / Left turns - BAD

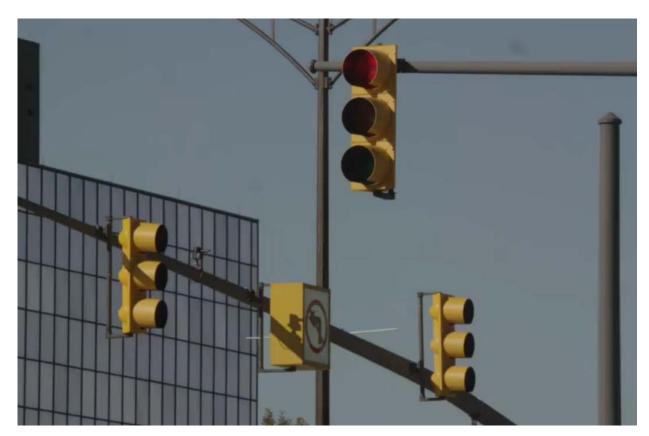
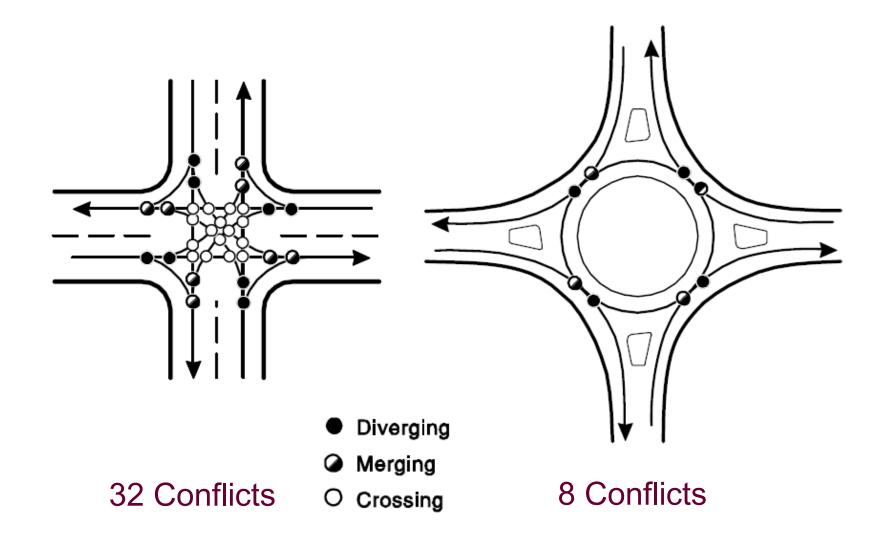



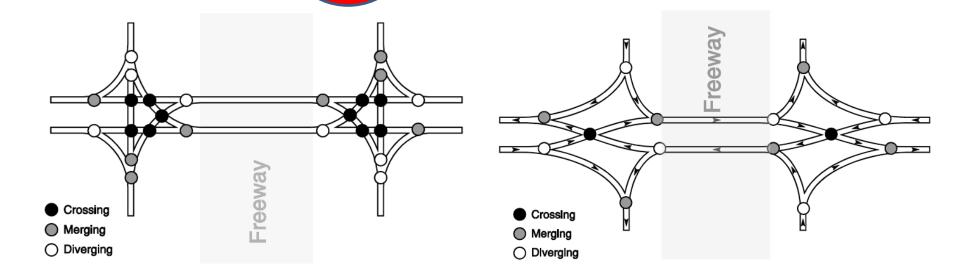
Photo: 2-Phase operation at a Median U-turn Intersection

2018 Transportation Engineering and Safety Conference The Relationship between Geometry and Traffic Operations (WIIW&HYCUTTFEDDT)

Conflict Points Reduced and Spread Out

www.divergingdiamond.com

2018 Transportation Engineering and Safety Conference The Relationship between Geometry and Traffic Operations (WIIW&HYCUTTFEDDT)


Conflict Points Reduced and Spread Out

Vehicle- Vehicle Conflict Points	Conventional	MUT	RCUT	
CrossingMergingDiverging			Crossing Marging Diverging	
Crossing	16	4	2	
Merging	8	6	6	
Diverging	8	6	6	
Total	32	16	14	

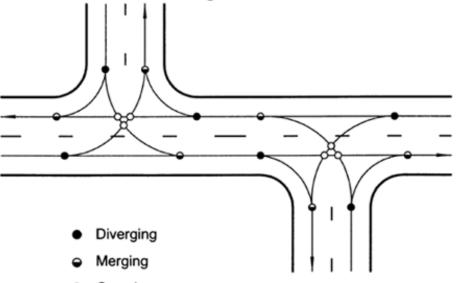
Conflict Points Reduced and Spread Out

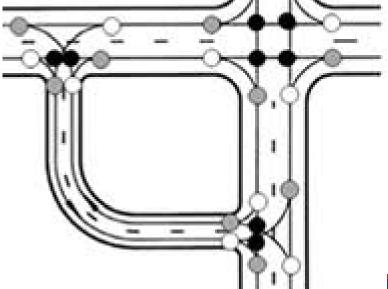
	Crossing	Merging	Diverging	Total
Conventional diamond	10	8	8	26
Diverging diamond	2	6	6	14

H.Y.C.U.T.T.F.E.D.D.T.

- 1) One-Way Street Progression
 - a) Lead-Lag Left
 - b) Partial Median Openings
 - c) Convert to One-Way Pairs when Practical
- 2) Creating Mini-Networks of Smaller Intersections
 - a) Strategic Mini-Network for Access Management
 - b) Smaller T-Intersections over one 4-legged
 - c) Separate Right Turns

H.Y.C.U.T.T.F.E.D.D.T.


- 3) More Efficient Signal Phases (when signalized)
 - a) T-intersections max out at 3 phases
 - b) Eliminate Left Turn Phasing when Possible through other alternatives
 - c) Strategize Signal Spacing based on Speeds and Cycle Lengths



H.Y.C.U.T.T.F.E.D.D.T.

- 4) Conflicts Reduced and Spread Out
 - a) Two T-intersections 18 Total Conflict Points, 6
 Crossing

 b) Alternative Left Turn Options within an Existing Network (30 conflicts spread out)

Final Thoughts

- Congestion can be addressed by adding capacity, reducing demand, and improving traffic flow
- Designs work a lot better when we integrate geometry with traffic operations at the same time
- Can be in the form of an Innovative Intersection
- Can be in the form of more conventional design with more innovative thought
- Industry as a whole needs more "cross-training" over "specialization"

Contact Information

Questions???

Gilbert Chlewicki, PE –

Advanced Transportation Solutions

gchlewicki@ats-american.com

301.395.9971

